Dong Lao, Ph.D.

Assistant Professor, Louisiana State University

EXPERIENCE

Louisiana State University (LSU)

Baton Rouge, Louisiana State University, USA

Assistant Professor (Tenure-track)

Since Aug. 2025

Email: dlao1@lsu.edu

• Research Keywords: Computer vision; Visual representation learning with minimal supervision; Scene understanding; Video analysis; Multi-modality perception; Geometric inference.

University of California, Los Angeles (UCLA)

Los Angeles, California, USA

July 2021 - July 2025

Postdoctoral Research Scholar

• Academic Advisor: Stefano Soatto.

EDUCATION

King Abdullah University of Science and Technology (KAUST)

Thuwal, Saudi Arabia

Ph.D. in Applied Mathematics and Computer Science

Jun. 2017 - Jun. 2021

- Academic Advisor: Ganesh Sundaramoorthi.
- $\circ~$ Dissertation: Mathematical Modeling for Online Video Understanding.

Approved by: Ganesh Sundaramoorthi, Peter Wonka, Helmut Pottmann, Wolfgang Heidrich, Stefano Soatto.

King Abdullah University of Science and Technology (KAUST)

Thuwal, Saudi Arabia

M.S. in Applied Mathematics and Computer Science

Aug. 2015 - May 2017

o Thesis: Minimum Delay Moving Object Detection.

Shanghai Jiao Tong University (SJTU)

Shanghai, China

B.S. in Mathematics and Applied Mathematics, Honours Degree by Zhiyuan College

Sept. 2011 - Jun. 2015

 $\circ\,$ Thesis: Complex and Coupled Complex Negative Order AKNS Equation.

RESEARCH

Fully Unsupervised Object Discovery from Videos by Motion

UCLA

 $Supervised\ by\ Professor\ Stefano\ Soatto$

- A real-time unsupervised multi-object discovery scheme with slot attention and adversarial learning.
- Breaking the constraint on object-centric data and binary segmentation from existing approaches.

Performance Boosting for Vision Transformers (ViTs) at Inference Time

UCLA

Supervised by Professor Stefano Soatto

• An efficient ensemble method enhancing ViT features leveraging group transformations (ICML 24).

Atmospheric Turbulence Mitigation for Computational Imaging

UCLA

Supervised by Professor Stefano Soatto

o An aggregation and registration scheme improving pre-image templates for turbulence removal (CVPR 24).

Geometric Inference as Generic Visual Representation Learning

UCLA

Supervised by Professor Stefano Soatto, in collaboration with Yale Vision Lab

- o Investigating monocular depth estimation as pre-training for downstream semantic tasks (ECCV 24).
- o Incorporating language priors to improve monocular depth estimation accuracy (CVPR 24, NeurIPS 24).
- A novel data augmentation pipeline for unsupervised depth completion (ECCV 24).

Channel-Directed Optimization for Convolutional Neural Networks

KAUST

Supervised by Professor Ganesh Sundaramoorthi and Professor Anthony Yezzi

- o Channel-directed gradients based on Sobolev metrics for stable CNN training.
- o Extension to accelerated optimization and optimizer stability analysis (NeurIPS 22; JMLR 24).

Layered Segmentation and Representation for Videos

KAUST

Supervised by Professor Ganesh Sundaramoorthi

• A layered formulation for moving object segmentation modeling self-occlusions (ECCV 18).

• An optical-flow guided framework for video inpainting based on layered formulation (ICCV 21).

Unsupervised Domain Adaptation for Semantic Segmentation

UCLA & KAUST

Supervised by Professor Stefano Soatto

o Conditional Prior Network for scene-compatibility prior in semantic segmentation (CVPR 20).

Minimum Latency Computer Vision in Videos

KAUST

Supervised by Professor Ganesh Sundaramoorthi

- A multi-frame moving object detection and segmentation scheme minimizing detection delay (CVPR 17).
- A generic minimum latency framework compatible with major single-frame object detectors (ICCV 19).

Solitary Solution Analysis for Nonlinear PDEs

SJTU

Supervised by Professor Guofu Yu

o Derivation and analysis on the solitary solutions of complex AKNS(-1) equation (Commun Nonlinear Sci 16).

PEER-REVIEWED PUBLICATIONS

†: corresponding author; *: equally contributed.

- RSA: Resolving Scale Ambiguities in Monocular Depth Estimators through Language Descriptions Z Zeng, Y Wu, H Park, D Wang, F Yang, S Soatto, D Lao, BW Hong, A Wong[†], 2024 NeurIPS.
- On the Viability of Monocular Depth Pre-training for Semantic Segmentation D Lao, F Yang, H Park, D Wang, S Lu, A Wong, S Soatto[†], 2024 ECCV.
- AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation Y Wu, TY Liu, H Park, S Soatto, D Lao, A Wong[†], 2024 ECCV.
- Sub-token ViT Embedding via Stochastic Resonance Transformers D Lao[†], Y Wu, TY Liu, A Wong, S Soatto[†], 2024, ICML.
- Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation D Lao[†], C Wang, A Wong, S Soatto[†], 2024, CVPR (highlight).
- WorDepth: Variational Language Prior for Monocular Depth Estimation Z Zeng, D Wang, H Park, F Yang, S Soatto, D Lao, A Wong[†], 2024, CVPR.
- A PDE-based Explanation of Extreme Numerical Sensitivities and Edge of Stability in Training Neural Networks

Y Sun, **D Lao**, A Yezzi, G Sundaramoorthi[†] 2024, JMLR.

- Surprising Instabilities in Training Deep Networks and a Theoretical Analysis Y Sun, D Lao, G Sundaramoorthi, A Yezzi[†], 2022, NeurIPS.
- Accelerated PDEs for Construction and Theoretical Analysis of an SGD Extension
 Y Sun, D Lao, G Sundaramoorthi, A Yezzi[†], 2021, The Symbiosis of Deep Learning and Differential Equations.
- Flow-Guided Video Inpainting with Scene Templates

D Lao[†], P Zhu, P Wonka, G Sundaramoorthi, 2021, ICCV.

• Phase Consistent Ecological Domain Adaptation

Y Yang*, **D Lao***, G Sundaramoorthi, S Soatto[†], 2020, CVPR.

- Minimum Delay Object Detection in Videos
 - **D** Lao[†], G Sundaramoorthi, 2019, ICCV.
- Extending Layered Models to 3D Motion

D Lao[†], G Sundaramoorthi, 2018, ECCV.

• Minimum Delay Moving Object Detection

D Lao, G Sundaramoorthi[†], 2017, CVPR.

• Complex and Coupled Complex Negative Order AKNS Equation

GF Yu[†], **D Lao**, 2016, Communications in Nonlinear Science and Numerical Simulation 30 (1-3).

PREPRINTS, UNDER REVIEW & ONGOING

- Divided attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots D Lao, Z Hu, F Locatello, Y Yang, S Soatto.
- Channel-Directed Gradients for Optimization of Convolutional Neural Networks D Lao, P Zhu, P Wonka, G Sundaramoorthi.
- Occom's Razor: Unsupervised Depth Completion by Learning from Occlusions H Park, R Chen, P Rim, S Soatto, D Lao, A Wong.
- Efficient Self-supervised Visual Representation Learning from Videos through Local-Global Occlusion Prediction.
 - D Lao, R Duan, A Wong, S Soatto.

Miscellaneous

- Since 2017, reviewer of major computer vision and artificial intelligence conferences and journals, including TPAMI, IJCV, CVPR, ICCV, ECCV, NeurIPS, ICML, ICLR, AAAI, BMVC, WACV, ACCV, etc.
- 2023, Runner-up of 6th CVPR UG2⁺ challenge (Atmospheric Turbulence Mitigation track).
- Since 2023, coordinator of UCLA Vision Seminar.
- 2017, teaching assistant of AMCS241 (Probability and Random Process).
- 2012, 2013, third prize scholarship; 2013, Merit Student.
- Part-time co-founder of LOCOMO Coaching & Consulting, focusing algorithm design for endurance sports.
- Former president and racing team captain of SJTU cycling club.
- Half Ironman finisher; Scuba diving (hypoxic Trimix and cave certified); Free diving (assistant instructor).